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Abstract: We study the Casimir effect in the presence of an extra dimension compactified

on a circle of radius R (M4 × S1 spacetime). Our starting point is the Kaluza Klein

decomposition of the 5D Maxwell action into a massless sector containing the 4D Maxwell

action and an extra massless scalar field and a Proca sector containing 4D gauge fields

with masses mn = n/R where n is a positive integer. An important point is that, in

the presence of perfectly conducting parallel plates, the three degrees of freedom do not

yield three discrete (non-penetrating) modes but two discrete modes and one continuum

(penetrating) mode. The massless sector reproduces Casimir’s original result and the

Proca sector yields the corrections. The contribution from the Proca continuum mode is

obtained within the framework of Lifshitz theory for plane parallel dielectrics whereas the

discrete modes are calculated via 5D formulas for the piston geometry. An interesting

manifestation of the extra compact dimension is that the Casimir force between perfectly

conducting plates depends on the thicknesses of the slabs.
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1. Introduction

In the 1920’s, Kaluza [1] and Klein [2] attempted to unify classical gravitation and electro-

magnetism by extending General Relativity to a five-dimensional (M4 ×S1) spacetime. In

modern times, string theory revived the idea of extra dimensions from a more fundamen-

tal perspective. In this paper, we are interested in the effect of a compact dimension on

Casimir’s original parallel plate scenario. Before we discuss this subject, we note that the

combined effect of compact dimensions and Casimir energies has recently attracted interest

in cosmology [3, 4]. For example, in a brane world scenario with toroidal extra dimensions,

it was found that Casimir energies can play a central role in attempting to resolve some

long outstanding puzzles. It was shown that under certain conditions, Casimir energies can

stabilize the extra dimensions, allow three dimensions to grow large and provide an effective

dark energy in the large dimensions [3]. Most recently, there has been some interesting work

on Casimir energies in Randall Sundrum models [5, 6] and in one-dimensional piston sce-

narios with extra compact dimensions for a massless scalar field obeying Dirichlet boundary

conditions [7]. The UV cut-off dependence of the Casimir energy for perfect conductors

with an extra compact dimension was also studied recently in [8] (the compactification
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scheme is not explicitly stated). Closer to the spirit of our work, the perfectly conduct-

ing parallel plate scenario with an extra dimension compactified to an S1/Z2 orbifold was

studied in [9] and explicit analytic expressions for the Casimir force were obtained.

In this paper, we calculate the correction to the Casimir force due to an extra dimension

compactified on a circle of radius R for the case of perfectly conducting parallel plates

separated by a distance a. Our starting point in section 2 is the Kaluza Klein (KK)

decomposition of the 4+1 (5D) Maxwell action into two sectors in 4D: a massless and

massive (Proca) sector [10]. The massless sector contains the 4D Maxwell action as well

as a 4D massless scalar field. The Proca sector yields an infinite set of 4D massive gauge

fields A
(n)
µ (and A

(n)∗
µ ) with masses mn = n/R where n is a positive integer and R is the

radius of the compact dimension. An advantage of the KK decomposition is that the

problem can now be analyzed in four spacetime dimensions without reference to the extra

fifth compact dimension. In 5D, the photon has three degrees of freedom or polarizations

and the KK decomposition must yield the same number of degrees of freedom since it

describes the same physical system. In the massless sector, the 4D Maxwell term yields

the usual two polarizations and the 4D massless scalar field yields one degree of freedom for

a total of three. In the 4D Proca sector, it is well known that the massive photon has three

polarizations because of the presence of a longitudinal mode in addition to the usual two

transverse modes. Both sectors have three degrees of freedom as in the original 5D case.

In section 3 the mode decomposition is explained in detail. An important point is

that in the presence of perfectly conducting plates, not all three modes reflect perfectly at

the boundary and one does not obtain three discrete (non-penetrating) modes. The three

polarizations yield two discrete and one continuum (penetrating) mode. This point does

not seem to have been taken into account in previous work [8, 9]. In 4D Proca theory,

unlike the usual Maxwell theory in 4D, there exists a propagating continuum mode inside

the perfect conductors [11]. The electric and magnetic fields inside the perfect conductors

are zero but the gauge potentials are non-zero contributing a non-zero energy density

given by m2 ((A0)2+A2 ) where m is the mass of the photon. The penetrating continuum

mode requires analyzing only the third component Az of the gauge potential [11]. The

boundary conditions on Az and its derivative ∂z Az are that they be continuous at the

boundaries and this is equivalent to the boundary conditions on a transverse-electric (TE)

mode propagating in plane parallel dielectrics of different permittivities. The Casimir

contribution from the continuum mode can therefore be calculated efficiently by making

use of Lifshitz theory [12].

The massless sector reproduces exactly Casimir’s original result [13]. The Proca sector

is responsible for the corrections due to the extra compact dimension and these are derived

in section 4. The corrections from the discrete modes are a function of the radius R of the

compact dimension and the correction from the continuum mode is a function of both the

radius R and the thicknesses ℓ1 and ℓ2 of the two perfectly conducting slabs respectively.

In the limit as R → 0 both the Proca discrete and continuum mode corrections vanish and

one recovers Casimir’s original result.

Casimir force calculations for the Proca discrete and the Proca continuum modes are

fundamentally different. As already mentioned, the continuum modes are calculated via
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Lifshitz theory. For the discrete modes we derive in the appendix Casimir piston formulas

for Dirichlet boundary conditions that are a 5D generalization of previously derived 4D

expressions [14]. We then make use of the parallel plate limit of these formulas. The advan-

tage of the piston scenario [15] is that it automatically includes the Casimir contribution

from the exterior region. The piston separates the volume into an interior and exterior and

the main point is that contributions from both chambers must be included in any realistic

calculation of the Casimir force. Some of the first exact results in 3+1 dimensions include

the 3+1 Dirichlet piston [16] and the 3+1 EM piston [14, 17] (see also refs. [18]–[27] with

a review in [18]).

We plot the contribution from both the Proca discrete and continuum modes as a

function of the circumference d = 2πR. The discrete modes make a 12.1% correction to

Casimir’s original result when d = 2 (lengths are in units of the plate separation a). The

continuum mode yields a correction of 0.6% at d = 2 when the thickness of each slab is

ℓ1 = 10 (this is a maximum at d=2 since ℓ1 = 10 yields results that are almost identical

to ℓ1 = ∞). The total correction to Casimir’s result at d = 2 and ℓ1 = 10 is therefore

12.7% (the maximum correction at d=2). Both corrections decrease exponentially fast as

d decreases reaching less than 1% at d=1.

In section 5 we summarize our results and discuss some relevant high-precision Casimir

experiments that may be important in the future to detect the effect of extra dimensions.

We use units with ~ = c = 1 throughout.

2. Kaluza Klein decomposition of the 5D Maxwell action

This section follows closely the TASI lectures, “To the Fifth dimension and Back” by

Raman Sundrum [10] (the signature is (+,−,−,−,−)). We will therefore be brief but

explain enough for the work to be self-contained and applicable to our particular case (i.e.

abelian gauge fields). The Maxwell action in 5D is given by

S =

∫

d4x

∫

dx4
{

− 1

4
Fa bF

a b
}

(2.1)

=

∫

d4x

∫

dx4
{

− 1

4
Fµν Fµν − 1

2
Fµ 4 Fµ 4

}

(2.2)

where a and b are 5D indices (they run from 0 to 4 inclusively) and µ and ν are 4D indices

(they run from 0 to 3 inclusively). If the fourth spatial dimension is compactified to a circle

of radius R we can express x4 as R φ where φ is an angular coordinate −π ≤ φ ≤ π. We

then can Fourier expand the (abelian) gauge fields as

Ab(x
µ, φ) = A

(0)
b (x) +

∞
∑

n=1

(A
(n)
b (x) ei n φ + c.c.) (2.3)

An important point is that it is not possible to go to axial gauge A4 = 0 because it is

not possible to remove the “n=0” part A
(0)
4 . This would require a gauge transformation

with function Λ = −x4 A
(0)
4 so that ∂4Λ = −A

(0)
4 . However, such a Λ is not valid because

it is proportional to x4 and hence is not periodic. As pointed out in [10], the closest to
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axial gauge one can reach is “almost axial” gauge where A4 does not depend on x4 i.e.

A4(x, φ) = A
(0)
4 (x). The action (2.2) then becomes [10]

S =

∫

d4x

∫ π

−π
R dφ

{

− 1

4
Fµν Fµν +

1

2
(∂µA

(0)
4 )2 +

1

2
(∂4Aµ)2

}

(2.4)

= 2π R

∫

d4x

{

− 1

4
F (0)

µν Fµν(0) +
1

2
(∂µ A

(0)
4 )2 (2.5)

+
∞
∑

n=1

[

− 1

2
|∂µ A(n)

ν − ∂ν A(n)
µ |2 +

n2

R2
|A(n)

µ |2
]

}

. (2.6)

The 5D Maxwell action decomposes into a 4D massless sector containing 4D Maxwell plus

an extra scalar field A0
4 and a Proca sector with an infinite set of 4D gauge fields A

(n)
µ

(and A
(n)∗
µ ) of mass mn = n/R where R is the radius of the compact dimension and n is a

positive integer.

3. Mode decomposition in the presence of perfectly conducting parallel

plates

3.1 Massless sector

We now find the mode decomposition in the presence of perfectly conducting parallel plates

separated by a distance a (situated at z = 0 and z = a). We begin with the massless sector

and then look at the Proca sector. In the massless sector, we have the usual four gauge

components A
(0)
0 , A

(0)
1 , A

(0)
2 and A

(0)
3 of 4D Maxwell plus an extra 4D massless scalar field

φ ≡ A
(0)
4 . This yields three degrees of freedom or polarizations: the usual two polarizations

from 4D Maxwell and one extra degree of freedom from the massless scalar field φ. We

can go to radiation gauge where A
(0)
0 = 0 and ∂iA

i(0) = 0 where i = 1, 2, 3 (this can be

extended to include i = 4 since ∂4 A4(0)
is identically zero). At the surface of the plates

the electric field components E1 and E2 are zero so that A
(0)
1 and A

(0)
2 are zero at the

surface of the conducting plates. The gauge condition ∂iA
i(0) = 0 yields a condition on

A
(0)
3 , namely ∂3 A3(0)

=0 at the surface of the plates. The field φ is a continuum mode that

obeys the wave equation � φ = 0 for a free massless scalar field. The perfect conductors

do not impose any extra condition on the scalar field. The mode decomposition for the

massless sector is then given by

A
(0)
0 = 0

A
(0)
1 = c1 sin(kz z) ei(k.x−ωt)

A
(0)
2 = c2 sin(kz z) ei(k.x−ωt)

A
(0)
3 = c3 cos(kz z) ei(k.x−ωt)

φ = A
(0)
4 = c4 ei(k.x+pz z−ω′t)











































kz =
n π

a
n = 1, 2, 3 . . .

k = (kx, ky)

x = (x, y)

ω2 = k2 + k2
z = k2 +

n2 π2

a2

where the momenta pz and kx, ky are continuous. The three modes A
(0)
1 , A

(0)
2 and A

(0)
3 yield

two independent modes because of the gauge condition ∂i A
i =0. These two modes are dis-

crete containing the quantized momentum kz =n π/a. The third independent mode is the
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massless scalar field φ and it is a continuum mode. The important point is that there are

three independent modes but only two are discrete. The scalar field φ makes no contribution

to the Casimir force between the plates because it is a free field throughout the spacetime:

it is not influenced by the perfectly conducting boundary conditions imposed on the elec-

tromagnetic field in 4D. The two discrete modes and their frequencies ω are identical to

what appears in the usual 4D case with perfectly conducting parallel plates. They therefore

reproduce exactly Casimir’s result and we can simply quote the result. The Casimir force

per unit area (the pressure P0) stemming from the massless sector is given by [13]

P0 = − π2

240 a4
. (3.1)

3.2 Proca sector: two discrete modes and one continuum mode

The Casimir effect for photons of mass m (Proca theory) in the presence of perfectly con-

ducting plates was analyzed in detail by Barton and Dombey [11]. In the presence of

perfectly conducting parallel plates, Barton and Dombey showed that the three polariza-

tions in Proca theory yield two discrete modes and one continuum mode. The important

point is that the three polarizations do not yield three but two discrete modes. The discrete

modes are perfectly reflected or non-penetrating modes where the gauge fields Aµ are zero

both inside and on the surface of the conductor [11]. The latter condition (i.e. gauge po-

tentials are zero on the surface) stems from the continuity of the gauge potentials in Proca

theory. The contribution of the two discrete modes does not depend on the thickness of

the conductors and yields an R-dependent correction to Casimir’s original parallel plate

result P0 given by (3.1). The continuum mode penetrates through the conductors and

makes a contribution to the Casimir force that depends on the thicknesses ℓ1 and ℓ2 of the

two conducting slabs and the radius R of the compact dimension. This contribution enters

into the Casimir force in a fundamentally different way than the discrete modes. Both the

continuum and discrete mode corrections vanish in the limit R → 0.

3.2.1 Discrete modes

With the Lorentz condition ∂µ A
(n)
µ = 0, the equations of motion outside the conductor

are given by (� + m2
n )A

(n)
µ = 0 where m2

n = n2/R2. For the discrete modes, the perfect

conductor boundary conditions are that the gauge components A
(n)
0 , A

(n)
1 , A

(n)
2 and A

(n)
3

are zero on the surface of the conductor (at z = 0 and z = a). The mode decomposition

for the discrete modes is given by [11]

A
(n)
0 = c0 sin(kz z) ei(k.x−ωt)

A
(n)
1 = c1 sin(kz z) ei(k.x−ωt)

A
(n)
2 = c2 sin(kz z) ei(k.x−ωt)

A
(n)
3 = 0



























kz =
ℓ π

a
(ℓ = 1, 2, ..)

k = (kx, ky) ; x = (x, y)

ω2 = k2 + k2
z + m2

n

Note that A
(n)
3 cannot be a discrete mode (either a cos(kz z) or sin(kz z) term) because A

(n)
3

must be both zero on the surface of the conductor and satisfy the Lorentz condition. The
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three modes A
(n)
0 , A

(n)
1 and A

(n)
2 together with the Lorentz condition yield two independent

discrete modes for every n. These have frequency ω given by

ω2 = k2 + k2
z + m2

n = k2
x + k2

y +
ℓ2 π2

a2
+

n2

R2
. (3.2)

where ℓ and n are both positive integers that run from 1 to ∞. The same analysis applies

to the fields A
(n)∗
µ . The parallel plate geometry can be thought of as a rectangular box

with plate separation a and plate area b × c where b and c are taken to be large (infinite

limit). The continuous momenta kx and ky can be expressed as nxπ/b and ny π/c in the

limit b, c → ∞, with nx and ny positive integers. The frequency is then given by

ω =
ℓ2 π2

a2
+

n2
x π2

b2
+

n2
y π2

c2
+

n2

R2
where b and c are assumed large (infinite limit) . (3.3)

Let ED be the 4+1 dimensional Dirichlet Casimir energy defined by the sum over the four

quantum numbers ℓ, nx, ny and n of ω/2 from 1 to ∞ (i.e. each of the four sums starts at

1). The Casimir energy for the Proca discrete modes Eprd is then equal to four times the

Dirichlet Casimir energy ED:

Eprd = 4ED . (3.4)

The factor of four stems from the Proca sector having two discrete modes for A
(n)
µ and two

discrete modes for A
(n)∗
µ .

3.2.2 Continuum mode and the equivalence with TE mode in dielectric

Besides the two discrete modes, Proca theory in the presence of conducting plates has a

continuum (penetrating) mode which also contributes to the Casimir energy. This has

been analyzed in [11]. In our case of an extra compact dimension we replace the mass

m in Proca theory by the mass mn = n/R (we then sum over all n when calculating the

Casimir energy).

The continuum mode requires analyzing only the component Az [11] (in our case

we have A
(n)
z for each n). In the Proca theory vector potentials of the electromagnetic

field are continuous and satisfy the Lorentz condition. The latter implies that ∂zA
(n)
z

is continuous across the boundary since ∂tA
(n)
0 and ∇||A

(n)
|| are continuous across the

boundary. Therefore in Proca theory the field A
(n)
z and its normal derivative ∂zA

(n)
z are

continuous across the flat boundaries perpendicular to the z direction [11].

The electric field is zero inside the perfect conductors. From this condition and the

Lorentz condition it follows that the A
(n)
z components satisfy the equation for a massless

scalar field inside the conductors �A
(n)
z = 0. Outside the media (in vacuum) the A

(n)
z

components satisfy the equation for a massive scalar field (� + m2
n )A

(n)
z = 0. In the

parallel plate set-up there are five regions (see figure 1). Region 1 is the exterior vacuum,

region 2 is a conducting slab of thickness ℓ1, region 3 is the gap of length a (in vacuum),

region 4 is a conducting slab of thickness ℓ2 and region 5 is the exterior vacuum. Let m

and m = 0 correspond to massive and massless propagation. From region 1 to region 5,

we therefore have the sequence m,m = 0,m,m = 0,m.

– 6 –
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l1

l2

a

1

2

3

4

5

Figure 1: The parallel plate set-up with its five regions. The five regions starting with region 1

are: exterior (vacuum), conducting slab of thickness ℓ1, vacuum gap of length a, conducting slab

of thickness ℓ2, exterior (vacuum).

The equations of motion for A
(n)
z and the conditions of continuity for A

(n)
z and its

derivative ∂zA
(n)
z are exactly equivalent to the conditions for the transverse electric (TE)

electromagnetic mode propagating in slabs of different dielectric permittivities. Massive

propagation is equivalent to TE propagation in a dielectric with permittivity ǫ(ω) = 1 −
ω2

p/ω
2 where the plasma frequency is given by ωp = mn. Massless propagation is equivalent

to propagation in a dielectric with permittivity ǫ=1. The conditions of continuity for the

TE mode at the boundaries are the same as those on A
(n)
z and its derivative. Therefore if

the five regions are replaced by dielectrics with permittivities ǫ(ω), ǫ = 1, ǫ(ω), ǫ = 1, ǫ(ω)

corresponding to the sequence m,m = 0,m,m = 0,m we obtain a physically equivalent

set-up. The upshot of all this is that the Casimir energy of the continuum mode A
(n)
z can

be calculated in the framework of Lifshitz theory.

The same conclusions can be applied to the continuum modes A
(n)∗
z and they make

the same contribution to the Casimir energy as A
(n)
z .

4. Corrections to the Casimir force

4.1 Proca discrete modes

The Dirichlet Casimir energy ED in a piston geometry associated with the frequency ω is

given by (see appendix)

ED = − 1

2π

∞
∑

kmn=1

∞
∑

ℓ=1

λkmn

ℓ
K1(2 ℓ λkmn a) with λkmn =

√

(πk/b)2 + (πm/c)2 + (n/R)2

(4.1)

The sum
∑∞

kmn=1 is short-hand for a triple sum with each sum running from 1 to ∞. The

expression (4.1) for the Dirichlet energy in a piston geometry automatically includes the

contribution from both the interior and exterior regions of the plates. The Casimir energy

due to Proca discrete modes is given by Eprd = 4ED. The Casimir force due to Proca

– 7 –
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discrete modes is given by the negative derivative with respect to the plate separation a:

Fprd = − ∂

∂a
Eprd

= − 2

π

∞
∑

kmn=1

∞
∑

ℓ=1

{ λkmn

a ℓ
K1(2 ℓ λkmn a) + 2λ2

kmn K0(2 ℓ λkmn a)
} . (4.2)

The force per unit area is given by Fprd/(b c) in the limit b, c → ∞. The sums over k and

m in (4.2) are therefore replaced by integrals which can be expressed in terms of modified

Bessel functions:

∞
∑

k=1

∞
∑

m=1

λkmn K1(2 ℓλkmn a)

∞
∑

k=1

∞
∑

m=1

λ2
kmn K0(2 ℓλkmn a)

→ b c

2π

∫ ∞

0

√

r2+λ2
n K1

(

2 ℓ a
√

r2+λ2
n

)

r dr → b c

2π

∫ ∞

0
(r2+λ2

n)K0

(

2 ℓ a
√

r2+λ2
n

)

r dr

=
( b c

2π

)( 1

2 ℓ a

)

λ2
n K2(2 ℓ a λn) . =

( b c

4π

)( 1

ℓ2 a2

)

λ2
n K2(2 ℓ a λn)

+
( b c

4π

)( 1

ℓ a

)

λn K1(2 ℓ a λn) . (4.3)

After substituting the above in (4.2) with λn = n/R, the force per unit area due to the

Proca discrete modes is equal to

Pprd = lim
b,c→∞

Fprd

b c
= −

∞
∑

n=1

∞
∑

ℓ=1

[ 3

2

n2

π2 R2 a2 ℓ2
K2(2 ℓ n a/R) +

n3

ℓ π2 R3 a
K1(2 ℓ n a/R)

]

.

(4.4)

The correction coming from the Proca discrete modes in units of Casimir’s parallel plate

result P0 is

Pprd

P0
=

∞
∑

n=1

∞
∑

ℓ=1

[ 360

π4

n2

ℓ2

( a2

R2

)

K2(2 ℓ n a/R) +
240

π4

n3

ℓ

a3

R3
K1(2 ℓ n a/R)

]

. (4.5)

In figure 2, we plot (4.5) as a function of the circumference d = 2π R in units of the plate

separation a. The correction is 12.1% of Casimir’s result when d = 2 (or R = 1/π) but

decreases rapidly (exponentially) as d decreases. It is 2.7% when d = 1.5, 0.098% when

d = 1 and 16 × 10−7% when d = 0.5.

When compact dimensions are not present, the piston geometry does not modify

Casimir’s parallel plate result in the limit of infinitely sized plates. In this limit the exte-

rior contribution to the Casimir energy is equal to a regularized volume term of an exterior

region, which is equal to zero in the zeta function regularization or should be subtracted in

other regularizations. However, when compact dimensions are present, the exterior region

makes a non-zero contribution even for the case of infinitely sized parallel plates. Therefore,

to calculate correctly the effect of a compact dimension on perfectly conducting parallel

plates, one must include not only the correction due to the interior but also the correction

due to the exterior in all regularizations. The correction (4.4) includes a significant contri-

bution from the exterior. The relevance of the piston geometry is therefore highlighted by

– 8 –
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Pprd 

Figure 2: Correction from Proca discrete modes Pprd (in units of Casimir’s parallel plate result)

as a function of the circumference d of the compact dimension (in units of the plate separation a)

the presence of compact dimensions. As an illustration, for the case of a = 1 and R = 1/π

(or d = 2), (4.4) yields

Pprd = −0.004990022267 when R = 1/π. (4.6)

To determine the interior and exterior contributions to this result we can use formulas

for the Dirichlet Casimir piston force FD derived in [20] and then evaluate Fprd = 4FD.

The Dirichlet piston force FD includes a contribution from the interior (FDI
) and exterior

(FDII
). The interior and exterior contributions can be obtained from equations (3.15) and

(3.18) in [20] respectively. We do not explicitly write them out here but simply evaluate

them when R = 1/π:

lim
b,c→∞

FDI

b c
=

π

25

(

3Γ(2)π−3 ζ(4) − 4Γ(5/2)π−7/2 ζ(5) + 8

∞
∑

n=1

∞
∑

ℓ=1

n3

ℓ
K1(2π n ℓ)

)

= 0.00121490257 . (4.7)

lim
b,c→∞

FDII

b c
= − π

25
Γ(5/2)π−7/2 ζ(5) = −0.00246240814 . (4.8)
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We therefore obtain

lim
b,c→∞

Fprd

b c
= 4 (0.00121490257 − 0.00246240814) = −0.004990022267 (4.9)

which is in agreement with (4.6).

The important point is that the exterior contribution FDII
is not negligible and in fact,

for the case we considered has a higher magnitude then the interior FDI
. Moreover, note

that FDI
here is positive and it is only the total FD = FDI

+ FDII
which is negative (as it

must be since Fprd given by (4.2) is manifestly negative). Without the exterior contribution

one would erroneously conclude that there is a repulsive force.

4.2 Proca continuum mode

As already explained, the Casimir energy due to the continuum mode can be calculated

via Lifshitz theory [12, 28 – 30]. We assume that the five regions in figure 1 are filled with

dielectrics of permittivities (starting with region 1) ǫ(ω), ǫ = 1, ǫ(ω), ǫ = 1, ǫ(ω) where

ǫ(ω) = 1 − ω2
p/ω

2 with the plasma frequency given by ωp = m. The Casimir energy of a

TE mode propagating in the dielectrics is then equivalent to the Casimir energy of a Proca

continuum mode of mass m (we will later replace m by mn = n/R). The Casimir energy

Ec for the continuum is thus given by (S is the surface of the plates):

Ec(l1, a, l2,m) =S

∫ +∞

0

dω

2π

∫ +∞

0

2πkdk

(2π)2
lnf(iω, k, l1, a, l2,m) (4.10)

where

f(iω, k, l1, a, l2,m) = 1 − rdown(iω, k, l1,m) rup(iω, k, a, l2,m), (4.11)

rdown(iω, k, l1,m) =
(ρ2 + ρ1)(ρ3 − ρ2) + (ρ2 − ρ1)(ρ3 + ρ2) e−2ρ2l1

(ρ2 + ρ1)(ρ3 + ρ2) + (ρ2 − ρ1)(ρ3 − ρ2) e−2ρ2l1
, (4.12)

rup(iω, k, a, l2,m) =
(ρ4 + ρ5)(ρ3 − ρ4) + (ρ4 − ρ5)(ρ3 + ρ4) e−2ρ4l2

(ρ4 + ρ5)(ρ3 + ρ4) + (ρ4 − ρ5)(ρ3 − ρ4) e−2ρ4l2
e−2ρ3a (4.13)

with definitions:

ρ2
1 =ρ3

3 =ρ2
5 = k2 + ω2 + m2, ρ2

2 =ρ2
4 = k2 + ω2. (4.14)

Here rdown (ω, k, l1,m) and rup (ω, k, a, l2,m) are reflection coefficients of the downward and

upward going plane waves reflecting at the lower (z = 0) and upper (z = a) boundaries

of the layer 3 respectively (see [31] for a derivation of formulas analogous to (4.10)). The

factor e−2ρ3a in (4.13) appears due to a mirror translation of the upper boundary from

a position z = 0 to a position z = a or, in other words, after the change of coordinates

z = −z′ + a.

It is convenient to switch to polar coordinates: r2 = k2 + ω2 with k = r cos(θ).

Then (4.10) can be expressed as

Ec =
S

(2π)2

∫ +∞

0
r2 ln f(r, l1, a, l2,m) dr. (4.15)
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The ρ’s are now given by

ρ1 =ρ3 =ρ5 =
√

r2 + m2, ρ2 =ρ4 =r (4.16)

and we obtain

f(r, l1, a, l2,m) = 1 − rdown(r, l1,m) rup(r, a, l2,m) (4.17)

where

rdown rup =
m4 (1 − e−2rℓ1) (1 − e−2rℓ2) e−2

√
r2+m2 a

(r +
√

r2 + m2)4 − m4 (e−2rℓ1 + e−2rℓ2) + (
√

r2 + m2 − r)4 e−2r(ℓ1+ℓ2)
.

(4.18)

We now replace m by mn = n/R in (4.18) and also make the substitution u = r R:

rdown rup = g (n, u, ℓ1, ℓ2, R) e−2
√

u2+n2 a/R (4.19)

where

g =
n4 (1 − e−2uℓ1/R) (1 − e−2uℓ2/R)

(u +
√

u2 + n2)4 − n4 (e−2uℓ1/R + e−2uℓ2/R) + (
√

u2 + n2 − u)4 e−2u(ℓ1+ℓ2)/R
. (4.20)

Note that g is independent of the plate separation a. The contribution to the Casimir

energy from Proca continuum modes Eprc is given by

Eprc = 2

∞
∑

n=1

Ec(l1, a, l2, n/R) (4.21)

where the factor of two includes the contributions of A
(n)
z and A

(n)∗
z . The Casimir pressure

from the Proca continuum modes is then given by

Pprc(l1, a, l2, R) = − 2

S

∞
∑

n=1

∂Ec(l1, a, l2, n/R)

∂a
(4.22)

= − 1

π2 R4

∞
∑

n=1

∫ ∞

0
u2
√

u2 + n2
g e−2

√
u2+n2 a/R

1 − g e−2
√

u2+n2 a/R
du . (4.23)

The above formula for the pressure due to the Proca continuum modes converges expo-

nentially fast and is dependent on the thicknesses ℓ1 and ℓ2 of the perfect conductors. In

figure 3, Pprc is plotted as a function of the circumference d = 2π R and the thickness of

the two slabs. In figure 3, lengths are expressed in units of the plate separation a, Pprc is in

units of Casimir’s result −π2/(240 a4) and the two slabs are assumed to have equal thick-

ness (ℓ1 =ℓ2). The pressure Pprc increases as the circumference d of the compact dimension

increases and as the thickness ℓ1 of the conductors increases. In the limit d → 0 (R → 0),

the pressure Pprc tends to zero exponentially fast regardless of the thickness of the slabs.

Conversely, in the infinitely thin limit of the conductors where ℓ1 → 0, Pprc tends to zero

regardless of the value of R. For d=2, Pprc reaches a maximum of approximately 0.6% of

Casimir’s result (the maximum value is reached in the ℓ1 → ∞ limit. This is close to the
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Pprc 

Figure 3: Correction from the Proca continuum mode Pprc (in units of Casimir’s parallel plate

result) as a function of the circumference d of the compact dimension and the thickness ℓ1 of the

two slabs (d and ℓ1 are in units of the plate separation a).

ℓ1 = 10 result in figure 3). For a given d, the maximum value of Pprc is significantly less

than the contribution Pprd from the Proca discrete modes (plotted in figure 2). For exam-

ple, at d=2, Pprd makes a 12.1% contribution while Pprc makes a maximum contribution

of only 0.6%. Hence, the bulk of the correction to Casimir’s result due to the presence of

the compact dimension stems from the Proca discrete modes.

The total Casimir pressure P on the plates is obtained by summing the contribution

P0 from the massless sector and the contribution Pprd + Pprc from the Proca sector:

P =P0 + Pprd + Pprc =

= − π2

240 a4
−

∞
∑

n=1

∞
∑

ℓ=1

[ 3

2

n2

π2 R2 a2 ℓ2
K2(2 ℓ n a/R) +

n3

ℓ π2 R3 a
K1(2 ℓ n a/R)

]

− 1

π2 R4

∞
∑

n=1

∫ ∞

0
u2
√

u2 + n2
g e−2

√
u2+n2 a/R

1 − g e−2
√

u2+n2 a/R
du (4.24)

where g is given by (4.20). Equation (4.24) is our final result. Both Pprd and Pprc tend

to zero as R → 0 and one recovers Casimir’s parallel plate result P0 = − π2

240 a4 in this

limit. Since Pprd and Pprc are manifestly negative, the magnitude of the Casimir pressure

increases in the presence of the extra compact dimension (it becomes more negative).

Our final result (4.24) naturally differs from previous results [8, 9] because the correction

to Casimir’s result is not derived using three discrete modes but two discrete and one
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continuum mode. Had we used three instead of two discrete modes the correction from the

Proca discrete modes would have been a factor of 3/2 times higher (e.g. 18.2% instead of

12.1% for a circumference d=2). Instead of a third discrete mode, we obtain a continuum

mode which is qualitatively and numerically different.

5. Conclusions

More than two decades ago, the Casimir effect in the 4D Proca case where the photon

has a mass m was studied for perfectly conducting parallel plates [11, 32]. Barton and

Dombey [11] showed that in the presence of conductors there are two discrete modes and

one continuum mode and not three discrete modes. Both the discrete and continuum

modes contributed corrections to Casimir’s result. They derived the leading continuum

mode contribution for a small mass m and found that it vanishes in the limit m → 0.

Casimir’s parallel plate result was recovered in the limit m → 0.

The 5D Maxwell problem with one dimension compactified to a circle is closely related

to the Proca problem. As in the Proca case, the polarizations in the presence of conducting

plates yield discrete and continuum modes. The existence of continuum modes which

propagate inside the perfect conductors is a qualitative distinction between the 5D (M4 ×
S1) and the 4D Maxwell problem. The Casimir force in the 5D spacetime depends on

the thicknesses of the slabs even for perfectly conducting boundary conditions, which is

an interesting manifestation of the extra compact dimension. We derive exact results for

the contributions of both the discrete and continuum modes and our final result for the

Casimir pressure on the plates is given by (4.24). The corrections to Casimir’s result are

manifestly negative and increase the magnitude of the Casimir pressure on the plates.

We plot the corrections versus the circumference d= 2πR for the discrete and continuum

modes. For the case d = 2 (in units of the plate separation) the correction is 12.1% for

the discrete modes and a maximum of 0.6% for the continuum modes. Both contributions

decrease exponentially fast as d decreases and Casimir’s parallel plate result is recovered

in the limit as the radius R of the compact dimension tends to zero.

The parallel plate geometry is a natural theoretical bench-mark for calculating new

effects such as those originating from extra compact dimensions. Casimir experiments

involving parallel plates are notoriously difficult and the most precise experiments to date

have reached only 15% precision [33]. Measurements have also been carried out to a

precision of 1% for sphere-plate separations in the range 0.1 − 0.9µm in another set of

experiments [34]. The experiments involving a micromachined torsional oscillator now

lead to a precision better than 1% [35]. In these experiments one measures a gradient of

the Casimir force between a sphere and a plate. The gradient of the force between the

sphere and the plate can be expressed for a wide range of distances in terms of the force

between the two plates Fpp: F ′
PS = 2πRSFPP , where RS is the radius of the sphere. Thus

the theoretical results for the Casimir force between the two plates can be verified with a

remarkable precision.
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A. Manifestly negative expression for the Dirichlet Casimir piston in d+1-

dimensions

Consider a d-dimensional rectangular resonator R = [0, a] × M , where M is a d − 1-

dimensional Dirichlet resonator with a boundary ∂M . Eigenfrequencies of the resonator R

with Dirichlet boundary conditions are determined by

ω2 =
(πl

a

)2
+ λ2

kD, l = 1 .. + ∞, k = 1 .. + ∞ (A.1)

∆(d−1)fk(x, y) = −λ2
kDfk(x, y) (A.2)

fk(x, y)|∂M = 0, (A.3)

∆(d−1) is a d − 1-dimensional Laplace operator. One can write λkD explicitly:

λkD =

√

√

√

√

d−1
∑

i=1

(πki

Li

)2
, (A.4)

here Li are lengths of the sides of the resonator M , ki are positive integers.

We adopt the zeta function regularization [36, 37]. The Casimir energy is defined then

as follows:

E =
∑ ω1−s

2

∣

∣

∣

s=0
. (A.5)

This sum has to be evaluated for large positive values of s, an analytical continuation to

the value s = 0 is being performed at the end of calculations.

Alternatively one can define the Casimir energy via a zero temperature one loop effec-

tive action W [38] (T1 is a time interval here):

W = ET1 (A.6)

E = −ζ ′(0) (A.7)

ζ(s) =
1

Γ( s
2 )

∫ +∞

0
dt t

s

2
−1
∑

ω

∫ +∞

−∞

dp

2π
exp

(

−t
(a

π

)2(

ω2 + p2
)

)

(A.8)

After integration over p in (A.8) one can verify that definitions (A.5) and (A.7) coincide.

In every Casimir sum it is convenient to write:

+∞
∑

l=1

exp(−tl2) =
1

2
θ3

(

0,
t

π

)

− 1

2
. (A.9)

For the first term on the right-hand side of (A.9) we use the property of the theta function

θ3(0, x):

θ3(0, x) =
1√
x

θ3

(

0,
1

x

)

(A.10)

and the value of the integral

∫ +∞

0
dt tα−1 exp

(

−p t − q

t

)

= 2

(

q

p

)
α

2

Kα(2
√

pq) (A.11)
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expressed in terms of a modified Bessel function Kα(x) for nonzero values of n to rewrite

the zeta function ζ(s) in the form:

ζ(s) =
∑

λkD

∫ +∞

−∞

dp

2π





√
π Γ
(

(s − 1)/2
)

2 Γ(s/2)

(

a
√

λ2
kD + p2

π

)1−s

+
+∞
∑

l=1

2
√

π

Γ(s/2)

(

π2l

a
√

λ2
kD + p2

)
s−1
2

K s−1
2

(

2al
√

λ2
kD + p2

)





+
∑

λkD

√
π Γ
(

(s − 1)/2
)

4aΓ(s/2)

(aλkD

π

)1−s
(A.12)

The Casimir energy of a resonator R is given by:

E =
∑

λkD

∫ +∞

−∞

dp

2π

1

2
ln
(

1 − exp(−2a
√

λ2
kD + p2)

)

+
a

2

∑

λkD

∫ +∞

−∞

dp

2π

(

λ2
kD + p2

)
1−s

2

∣

∣

∣

∣

s=0

+
1

4

∑

λkD

λ1−s
kD

∣

∣

∣

∣

s=0

. (A.13)

Here we used the property K−1/2(x) =
√

π/(2x) exp(−x).

The term

Ecylinder =
1

2

∑

λkD

∫ +∞

−∞

dp

2π

(

λ2
kD + p2

)
1−s

2

∣

∣

∣

∣

s=0

(A.14)

can be thought of as the Casimir energy per unit length of an infinite cylinder with Dirichlet

boundary conditions and the same d − 1-dimensional section M as the resonator R.

For the experimental check of the Casimir energy one should measure the force. One

can insert two d− 1-dimensional plates M inside an infinite cylinder with the same d− 1-

dimensional cross section M and measure the force acting on one of the plates as it is being

moved through the cylinder. The distance between the plates is a.

To calculate the force on each of the two plates inside a cylinder with the cross section

M one can perform the following gedanken experiment that was frequently used to calculate

the Casimir force between two infinite parallel plates. Imagine that 4 parallel plates are

inserted inside an infinite cylinder and then 2 exterior plates are moved to spatial infinity.

This situation is exactly equivalent to 3 cavities touching each other. From the energy of

this system one has to subtract the Casimir energy of an infinite cylinder without plates

inside it, only then do we obtain the energy of interaction between the interior parallel

plates, the one that can be measured in the experiment. The force on each of the interior

parallel plates is the same as the force on the piston when one of the three piston plates (the

exterior plate) is moved to infinity. So the attractive force on each of the d−1-dimensional

Dirichlet pistons inside the d-dimensional Dirichlet cylinder is equal to:

F (a) = −∂E(a)

∂a
, (A.15)
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where the Casimir energy of a d−1-dimensional piston with Dirichlet boundary conditions

can be written as follows:

E(a) =
∑

ωc

1

2
ln(1 − exp(−2aωc)) =

=
∑

λkD

∫ +∞

−∞

dp

2π

1

2
ln
(

1 − exp(−2a
√

λ2
kD + p2)

)

, (A.16)

the sum here is over all eigenfrequencies ωc for a cylinder with a d − 1-dimensional cross

section M and an infinite length with Dirichlet boundary conditions imposed.

By making use of an identity [39]

1

2

∫ +∞

−∞

dp

2π
ln
(

1 − exp(−2a
√

λ2 + p2)
)

= − λ

2π

+∞
∑

l=1

K1(2lλ a)

l
(A.17)

one can rewrite (A.16) in the form:

E(a) = − 1

2π

+∞
∑

l=1

∑

λkD

λkDK1(2lλkDa)

l
, (A.18)

λkD =

√

√

√

√

d−1
∑

i=1

(πki

Li

)2

the sum should be performed over all sets of positive integer values of ki.

Acknowledgments

AE acknowledges support from a discovery grant of the Natural Sciences and Engineering

Research Council of Canada (NSERC). VM acknowledges support from a CNRS grant

ANR-06-NANO-062 and grants RNP 2.1.1.1112, SS 5538.2006.2 and RFBR 07-01-00692-a.

AE would like to thank the Kavli Institute for Theoretical Physics (KITP, Santa Barbara)

for their hospitality and financial support where part of this work was completed and

presented (this research was supported in part by the National Science Foundation under

Grant No. PHY05-51164). AE would also like to thank professor Raman Sundrum of John

Hopkins University for email correspondence.

References

[1] T. Kaluza, On the problem of unity in physics, Sitz. Preus. Acad. Wiss. K1 (1921) 966.

[2] O. Klein, Quantum theory and five-dimensional theory of relativity, Z. Phys. 37 (1926) 895.

[3] B.R. Greene and J. Levin, Dark Energy and Stabilization of Extra Dimensions, JHEP 11

(2007) 096 [arXiv:0707.1062].

[4] A.A. Saharian and M.R. Setare, Casimir effect in de Sitter spacetime with compactified

dimension, Phys. Lett. B 659 (2008) 367 [arXiv:0707.3240]; The Casimir effect on

background of conformally flat brane-world geometries, Phys. Lett. B 552 (2003) 119

[hep-th/0207138].

– 16 –

http://jhep.sissa.it/stdsearch?paper=11%282007%29096
http://jhep.sissa.it/stdsearch?paper=11%282007%29096
http://arxiv.org/abs/0707.1062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB659%2C367
http://arxiv.org/abs/0707.3240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB552%2C119
http://arxiv.org/abs/hep-th/0207138


J
H
E
P
1
2
(
2
0
0
8
)
0
3
5

[5] M. Frank, N. Saad and I. Turan, The Casimir force in Randall Sundrum models with q + 1

dimensions, arXiv:0807.0443.

[6] R. Obousy and G. Cleaver, Casimir energy and brane stability, arXiv:0810.1096.

[7] H.-b. Cheng, The Casimir force on a piston in the spacetime with extra compactified

dimensions, Phys. Lett. B 668 (2008) 72 [arXiv:0801.2810].

[8] L. Perivolaropoulos, Vacuum energy, the cosmological constant and compact extra

dimensions: constraints from Casimir effect experiments, Phys. Rev. D 77 (2008) 107301

[arXiv:0802.1531].

[9] K. Poppenhaeger, S. Hossenfelder, S. Hofmann and M. Bleicher, The Casimir effect in the

presence of compactified universal extra dimensions, Phys. Lett. B 582 (2004) 1

[hep-th/0309066].

[10] R. Sundrum, To the fifth dimension and back. (TASI 2004), hep-th/0508134.

[11] G. Barton and N. Dombey, Casimir effect for massive photons, Nature 311 (1984) 336;

The Casimir effect with finite mass photons, Ann. Phys. 162 (1985) 231.

[12] E.M. Lifshitz, The theory of molecular attractive forces between solids, Sov. Phys. JETP 2

(1956) 73.

[13] H.B.G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. N.

Akad. Wet. 51 (1948) 793.

[14] V.N. Marachevsky, Casimir interaction of two plates inside a cylinder, Phys. Rev. D 75

(2007) 085019 [hep-th/0703158].

[15] R.M. Cavalcanti, Casimir force on a piston, Phys. Rev. D 69 (2004) 065015

[quant-ph/0310184].

[16] A. Edery, Casimir piston for massless scalar fields in three dimensions, Phys. Rev. D 75

(2007) 105012 [hep-th/0610173]; Multidimensional cut-off technique, odd-dimensional

Epstein zeta functions and Casimir energy of massless scalar fields, J. Phys. A 39 (2006) 685

[math-ph/0510056].

[17] M.P. Hertzberg, R.L. Jaffe, M. Kardar and A. Scardicchio, Attractive Casimir forces in a

closed geometry, Phys. Rev. Lett. 95 (2005) 250402 [quant-ph/0509071]; Casimir Forces in a

Piston geometry at zero and finite temperatures, Phys. Rev. D 76 (2007) 045016

[arXiv:0705.0139].

[18] A. Edery and V. Marachevsky, The perfect magnetic conductor (PMC) Casimir piston in

d + 1 dimensions, Phys. Rev. D 78 (2008) 025021 [arXiv:0805.4038].

[19] V.N. Marachevsky, Casimir interaction: pistons and cavity, J. Phys. A 41 (2008) 164007

[arXiv:0710.4130].

[20] A. Edery and I. MacDonald, Cancellation of nonrenormalizable hypersurface divergences and

the d-dimensional Casimir piston, JHEP 09 (2007) 005 [arXiv:0708.0392].

[21] V.N. Marachevsky, Casimir energy of two plates inside a cylinder, hep-th/0609116.

[22] V.N. Marachevsky, One loop boundary effects: techniques and applications, hep-th/0512221.

[23] G. Barton, Casimir piston and cylinder, perturbatively, Phys. Rev. D 73 (2006) 065018.

– 17 –

http://arxiv.org/abs/0807.0443
http://arxiv.org/abs/0810.1096
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB668%2C72
http://arxiv.org/abs/0801.2810
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C107301
http://arxiv.org/abs/0802.1531
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB582%2C1
http://arxiv.org/abs/hep-th/0309066
http://arxiv.org/abs/hep-th/0508134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NATUA%2C311%2C336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C2%2C73
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C2%2C73
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C085019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C085019
http://arxiv.org/abs/hep-th/0703158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C065015
http://arxiv.org/abs/quant-ph/0310184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C105012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C105012
http://arxiv.org/abs/hep-th/0610173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C685
http://arxiv.org/abs/math-ph/0510056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C250402
http://arxiv.org/abs/quant-ph/0509071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C045016
http://arxiv.org/abs/0705.0139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C025021
http://arxiv.org/abs/0805.4038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA41%2C16400
http://arxiv.org/abs/0710.4130
http://jhep.sissa.it/stdsearch?paper=09%282007%29005
http://arxiv.org/abs/0708.0392
http://arxiv.org/abs/hep-th/0609116
http://arxiv.org/abs/hep-th/0512221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C065018


J
H
E
P
1
2
(
2
0
0
8
)
0
3
5

[24] A. Edery, Casimir forces in Bose-Einstein condensates: finite size effects in

three-dimensional rectangular cavities, J. Stat. Mech. (2006) P06007 [hep-th/0510238].

[25] S.A. Fulling, L. Kaplan and J.H. Wilson, Vacuum Energy and Repulsive Casimir Forces in

Quantum Star Graphs, Phys. Rev. A 76 (2007) 012118 [quant-ph/0703248].

[26] S.C. Lim and L.P. Teo, Three dimensional Casimir piston for massive scalar fields,

arXiv:0807.3613.

[27] S.C. Lim and L.P. Teo, Casimir piston at zero and finite temperature, arXiv:0808.0047.

[28] Yu.S. Barash and V.L. Ginzburg, Electromagnetic fluctuations in matter and molecular

(Van-der-Waals) forces between them, Sov. Phys. Usp. 18 (1975) 305.

[29] K.A. Milton, The Casimir effect: Recent controversies and progress, J. Phys. A 37 (2004)

R209 [hep-th/0406024].

[30] S.A. Ellingsen and I. Brevik, Casimir force on real materials: The Slab and cavity geometry,

J. Phys. A 40 (2007) 3643 [quant-ph/0611030].

[31] A. Lambrecht and V.N. Marachevsky, Casimir interaction of dielectric gratings, Phys. Rev.

Lett. 101 (2008) 160403 [arXiv:0806.3142].

[32] P.C.W. Davies and S. Unwin, Quantum Vacuum Energy And The Masslessness Of The

Photon, Phys. Lett. B 98 (1981) 274.

[33] G. Bressi, G. Carugno, R. Onofrio and G. Ruoso, Measurement of the Casimir force between

parallel metallic surfaces, Phys. Rev. Lett. 88 (2002) 041804 [quant-ph/0203002].

[34] U. Mohideen and A. Roy, Precision measurement of the Casimir force from 0.1 to 0.9 µm,

Phys. Rev. Lett. 81 (1998) 4549 [physics/9805038];

A. Roy, C.-Y. Lin and U. Mohideen, Improved Precision Measurement of the Casimir Force,

Phys. Rev. D 60 (1999) 111101 [quant-ph/9906062];

M. Bordag, U. Mohideen and V.M. Mostepanenko, New developments in the Casimir effect,

Phys. Rept. 353 (2001) 1 [quant-ph/0106045].

[35] R.S. Decca et al., Precise comparison of theory and new experiment for the Casimir force

leads to stronger constraints on thermal quantum effects and long-range interactions, Ann.

Phys. (NY) 318 (2005) 37 [quant-ph/0503105]; Novel constraints on light elementary

particles and extra- dimensional physics from the Casimir effect, Eur. Phys. J. C 51 (2007)

963 [arXiv:0706.3283].

[36] E. Elizalde, Ten physical applications of spectral zeta functions, Springer (1995).

[37] K. Kirsten, Spectral functions in Mathematics and Physics, Boca Raton FL, CRC Press

(2002).

[38] D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279

[hep-th/0306138].

[39] V.V. Nesterenko and I.G. Pirozhenko, Justification of the zeta function renormalization in

rigid string model, J. Math. Phys. 38 (1997) 6265 [hep-th/9703097].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0606%2CP007
http://arxiv.org/abs/hep-th/0510238
http://arxiv.org/abs/quant-ph/0703248
http://arxiv.org/abs/0807.3613
http://arxiv.org/abs/0808.0047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA37%2CR209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA37%2CR209
http://arxiv.org/abs/hep-th/0406024
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA40%2C3643
http://arxiv.org/abs/quant-ph/0611030
http://arxiv.org/abs/0806.3142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB98%2C274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C041804
http://arxiv.org/abs/quant-ph/0203002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C4549
http://arxiv.org/abs/physics/9805038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C111101
http://arxiv.org/abs/quant-ph/9906062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C353%2C1
http://arxiv.org/abs/quant-ph/0106045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C318%2C37
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C318%2C37
http://arxiv.org/abs/quant-ph/0503105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC51%2C963
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC51%2C963
http://arxiv.org/abs/0706.3283
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C388%2C279
http://arxiv.org/abs/hep-th/0306138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C38%2C6265
http://arxiv.org/abs/hep-th/9703097

